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Generalized Perfectly Matched Layer for the
Absorption of Propagating and Evanescent
Waves in Lossless and Lossy Media
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Abstract— The perfectly matched layer (PML), proposed by
Berenger, has been proved very effective in absorbing prop-
agating waves in lossless media. However, it has been found
that the original construction of PML cannot effectively absorb
evanescent waves. Also, significant reflection can appear as PML
is applied to terminate lossy media. This paper describes a
generalized perfectly matched layer (GPML) that extends the
original PML to absorb both propagating and evanescent waves
in lossless and lossy media. The generalized perfectly matched
layer is derived from the Maxwell s equations in stretched
coordinates and can be easily implemented in finite-difference
time-domain (FDTD) programs. This paper also presents proper
selection of parameters in the numerical implementation of the
generalized perfectly matched layer to achieve good performance
in absorption.

1. INTRODUCTION

HE PERFECTLY matched layer (PML), recently pro-

posed by Berenger, is an artificial lossy material used as
an absorber for truncating numerical computation domains in
finite-difference time-domain (FDTD) computations [1]. With
this technique, certain field components are split into sub-
components and additional material parameters are introduced
so that the impedance of the PML is matched to that of
the free-space or internal lossless media at all frequencies
and all incident angles. In contrast, previously developed
lossy absorbers can typically match the interior media at only
the normal incident angle [2]. It has been verified in many
applications that the perfectly matched layer can absorb out-
going waves much more effectively than previously developed
absorbers and many local absorbing boundary conditions [1],
[3].

Recent studies have found that although the perfectly
matched layer is very effective in absorbing propagating waves
in lossless media, PML is not effective in absorbing evanescent
waves [4]-[7]. Moreover, the original PML absorbers are
only applicable to interior lossless media. For terminating
lossy materials, PML can only match a special type of lossy
material when its electric and magnetic conductivities satisfy
a particular relation. In general, significant reflections will
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appear at the interface of PML and an interior lossy medium.
Therefore, the original form of the PML is not a good choice
for applications involving modeling wave propagation in lossy
media.

A modification of the original PML has been proposed in [5]
for the absorption of evanescent waves where interior media
are lossless. The modification of PML for frequency domain
finite-element applications presented in [8] made PML applica-
ble to lossy media as well. In this paper, a type of absorber that
can effectively absorb propagating and evanescent waves for
both interior lossless and lossy media is presented for FDTD
applications. We call this absorber the generalized perfectly
matched layer (GPML) which, under special circumstances,
becomes the original PML. Following the recently published
letter on the introduction of the GPML [9], this paper presents
a more detailed derivation and more numerical examples to
demonstrate the performance of GPML. Proper numerical
implementation of GPML will also be discussed in detail in
following sections.

II. PERFORMANCE OF PML FOR ABSORBING
EVANESCENT WAVES AND IN LOSSY MEDIA

Consider the configuration shown in Fig. 1, where the
interior lossless medium is in the region 2 <0, and the
perfectly matched layer with o, = o, = 0 is in the region
z>0. Assume a plane wave propagates in the direction
parallel to the -z plane and of an angle § with the z axis. Let
% be any field component of the plane wave, then from [1, eq.
15], as the plane wave enters the PML, the field component
in PML can be expressed as

= 1/}Oejw(t—[z cos f—zx sinG]/c)e—(oz cosf/ec)z )

where o, is the electric conductivity of the PML medium.
The last exponential of (1) rules the magnitude of the wave
in PML. For a propagating wave in the z direction, cosf is
a real number and the term e—7:<039/(€©)z determines that
the wave decreases exponentially in the z direction. On the
other hand, if the variation of the field in the z direction
is of evanescent nature, cosf will be an imaginary number,
the term e~7= °°39/(<)2 po Jonger decays in the z direction
and the PML does not add any additional attenuation to the
wave. Therefore, in regions where fields are evanescent in
the direction normal to PML/interior-medium interfaces, PML
absorbers cannot provide any help in reducing the reflection.
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Interior medium Absorber

Fig. 1. Configuration of an interior lossless medium terminated with a PML
absorber. A plane wave propagates in the direction parallel to the z~z plane
and of an angle # with the z axis.

Serious problems arise when PML is used to terminate
interior lossy media. In the above example of a lossless
interior medium, the conductivities of the PML are chosen
as 0, = oy, = 0, and

O'z/('::U:/ou' 2

so that the impedance of the PML, as proved by Berenger
[1], is the same as that of the interior lossless medium for
any incident angles. If the interior medium is lossy, say with
a constant electric conductivity g, then the PML specified
by (2) and either 0, = 0, = 0 or 0, = 0, = oke/p =
o€/ = og no longer matches the interior medium even at the
normal incident angle. At the normal incidence, for example,
the impedance of the PML is \/[1,—/6, whereas the impedance
of the interior lossy medium is \/u/(e + 0p/jw). Therefore,
significant reflections can be expected from the interface of
the PML and the interior lossy medium. This limitation of
PML excludes the application of PML to many problems that
involve lossy media.

III. DERIVATION OF GENERALIZED
PERFECTLY MATCHED LAYER

The formulation of the generalized perfectly matched layer
is to be derived with the modified Maxwell’s equations in the
stretched coordinates. The modified Maxwell’s equations in
the stretched coordinates have been used in [10] to re-derive
the original PML proposed by Berenger and in [5] to derive
the modified PML for absorbing evanescent waves. Similar
notations and procedures are used in the following derivations
as those in [5] and [10].

Consider a medium with isotropic parameters (e, i, 0o, 03),
where oy and o are not necessarily related by (2), the fre-
quency domain modified Maxwell’s equations in the stretched
coordinates can be written as

V. x E=—juy'H 3)
V, x H =jwe'E @
! *® f o+ r .
where ¢/ = p+ of/jw, € = ¢+ 0¢/jw, and

o .10
A LA

- — a — — .
8z Ox ysy dy s, 0z

—

+a &)
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Sz,8y, and s, are the coordinate stretching variables in the
z,y, and z directions.
Substitute a general plane-wave solution

B = Fope 9% ©6)
H = Hye %7 0
where k = Goky + Gyky + @.k,, into (3) and (4) gives
ks x E=wy/'H ®)
ks x H=—wé'E ©)
where
&:@ﬁ+@ﬁ+@ﬁ. (10)
LN y 5z
Combining (8) and (9)
— W EE =k x ks x B
=ky(ks - B) — K2E. (11)
From (9), l_v; E = 0, then from (10) and (11), we have
2 k2 kz

k2=w2//€'=k§=;§+‘s%+ 12)
x Yy

;Z.

Assume that two media with parameters (e}, p)) and
(€5, ph) are interfaced at z = 0, and a plane wave of arbitrary
polarization is obliquely incident on the interface from medium
1. Suppose the incident plane-wave propagates in the direction
of angles § and ¢ to the z and z axes, then

ky = ks, sinfcos ¢ (13)
ky =ksysinfsin¢ 14
k, =ks, coséb. (15)

The incident field can be decomposed into a sum of two
components, one with the electric field perpendicular to the
plane of incident and the other with the electric field parallel
to the plane of incident. Applying the continuity conditions for
the tangential electric and magnetic fields at the interface, the
reflection coefficients of these two components can be derived
straightforwardly in the same way as that in [10]

ki costyub — ko cosfap)
k1 cos 0y + ko cos Gap)

k1 cos@1¢h — ko cos B¢

k1 cos b€l + ko cos fz¢

R,

(16)

Ry =

a7

The phase matching condition at the interface requires that
kiz = kox and kyy = koy, ie.,

k181, sin By cos ¢y = k259, sin 6 cos b2 (18)
and
k151ysin 81 sin ¢y = ky s, 8in b2 sin ¢s. (19)
If we choose
€] =€
= o
S1z = S2¢
S1y = S2y 20)
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then from (12), k1 = ko, and from (18) and (19), 8; = 6,
and ¢1 = ¢2. Subsequently, the two media, which can have
arbitrary electric loss (o) and arbitrary magnetic loss (o), are
perfectly matched because from (16) and (17), Ry = R)) =0
for all angles of incidence and all frequencies.

Assume medium 1 is the interior region and medium 2 is a
perfectly matched absorber, then in medium 1, which is a real
physical medium, ($14,81y,51.) = (1,1,1); and in medium
2, which is an artificial absorbing medium, the stretching
coordinate variables should be chosen as (sag, S2y,$2:) =
(1,1, s.) to guarantee no reflection at the interface. The term
s, is in general a complex number and can be chosen in the
following form:

@1

8:(2) = 820(%) [1 + az(z)}

Jwe

The terms s.o(z) and o.(z) are functions of z and need
to be selected carefully to avoid numerical reflections in
the absorber. Proper selection of s,q(z) and o.(z) will be
discussed in Section V.

The plane wave solution in the GPML absorber can then
be derived as

= ¢0€](Wt_l—c"?)

— woej(wt—-]k sin GaL-)e—jksZ cos 01‘ (22)

In the last exponential of (22), if let kcosf = k, — jkZ, then

. klo
1/) :¢Oe](wt—ksmew) exp ':_]<k,lz 1 Z)szO(z)Z:!
we
klo,
- exp |:— (k;/—l- 27 >Sz0(2)z:|. (23)
we

If the plane wave is mainly a propagating wave, ie., k.
is dominant, the amplitude of the wave decays mainly as
e~(kio=/ “’5)520 (2)2which is similar to the behavior of the wave
in the original PML If the plane wave is evanescent in the
z direction, ie., k. is dominant, the wave decays mainly as
—k520(2)z , whereas in the original PML, the evanescent wave
decays as e *.#_ By choosing $.0(2) > 1, the attenuation of
the evanescent wave is accelerated. A potential problem that
can be noticed from (23) is that if &£/ is negative, which may
happen for evanescent waves when medium is lossy, the last
exponential in (23) may increase rather than decrease with z
at low frequencies.

From (3), (4), and (21), and with the notation of sub-
components proposed by Berenger [1], the frequency domain
equations for the field components in the generalized perfectly
matched layer can then be written as

6Hx . op0y
FE. 4
syo(y)dy (Jwe Toot oyt Jwe ) v 9
OH, .
(jwe +oo+ 0, + 22 )Eyz (25)
Szo( jwe
0H, 2
—‘—:<]we+0'0+0'2 .OU )E:z:z (26)
$20(2)0 Jjwe
8H -
= (ywe + 00+ 0, + 22 )E @7)
8q0(7) Jwe
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OH, *
i Jw6+00+0m+0.00 )E (28)
Sz0(z)0x Jw
OH,
———— = | jwe+ o0+ 0oy + ko (29)
syggt_%l Ay
= 30
syo< >ay G0
Szo ( )Hyz €29
(jwu + o5+ o + J )Hmz (32)
wp+ oy +or+ H,., @33
szo( )3»’0 (J Hr o qu ) 49
oL, 0505
_YrE H,.
$z0(2)0z (JW To ot qu ) ve B39
OF, .
= jwp + ol + o’ + y)Hm (35)
SyO( )0y ( 0 Yo jwp Y

where 0, /¢ = oy /p,0y/c = ok /p and o /e = o}/, but o
and ¢f may not satisfy o¢/¢ = ofj/u. It can be shown that
if o9 = o5 = 0 and s.0(x) = syo(y) = s.0(z) = 1, then
(24) to (35) return to the original formulation of Berenger’s
PML [1], [3].

IV. FINITE-DIFFERENCE IMPLEMENTATION OF GPML

The time-domain equations corresponding to GPML can
be converted from the frequency-domain equations (24)—(35).
For the convenience of illustration, let’s consider the two-
dimensional (2-D) TE® case with E, = 0 and 3/8z = 0

We have
J—f%g <jw/1,+0'0+0 + ;>Hy (36)
ok

o~ o e
_%; _ (jwe + 00+ 0p + 207 ) E, (38

Introducing auxiliary variables
El = jinm (40)
E) = ]iny (41)
H, = ]%Hm 42)
Hl = jiwﬂy @3)

which are the time integration of corresponding field com-
ponents. Transferring (36) to (43) into the time-domain, we
get

ok, oM, 030*
_ H Y rrl
570(1)3y =r, + (05 +oy)H., + ,u H,, (44
oL,  OH, or
- Sro(a)0s =u 5t + (o5 +03)H,, —i— M H 45)
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0H,  JE, 000 1f
 520(2)0 = T (00 +02)Ey + € B, (46)
dH. JF 00,
PR E, VE!L 47
o)y o Tt TEE D
and
OE!
ot =k, (438)
8E§
5 =L 49
oHL,
E)Hgy
it = Hy. (51)

The discretization of (44)—(51) follows the standard central
difference approach. For example, the difference equation of
45) is
HIFYV2(i 4+ 1/2,5+1/2)
p/AL = (06 +03)/2 pa_1/2, :
= H?, +1/2,5+1/2
WA @ity a e TR
1
(u/ Bt + (0§ + 03)/2)sz0(x) A
By i+ 1,7 +1/2) — E; (4,5 + 1/2)]
060; 1 Ing, .
- HIMi4+1/2,5 +1/2).
I R ) T A
(52)

The term HI7(:+1/2, 5+ 1/2) in (52) can be found through
discretizing (50) as

HIM(i+1/2,j+1/2) =HIZ Y6+ 1/2,5 + 1/2)
+ AtHZV2(i 4+ 172,54+ 1/2).
(53)

For TM? fields and general 3-D fields, the corresponding finite
difference equations can be derived in the same way as above.

V. SELECTION OF MATERIAL. PARAMETERS

The parameters s;0(z), Sy0(y), $:0(2), 0z(x), 0y(y) and
o.(z) need to be properly chosen to have the absorber perform
effectively. Theoretically, the larger the values of these param-
eters, the faster the attenuation of fields in the absorber. How-
ever, if the parameters sz0(z),sy40(Yy), $20(2), 02(2),0y(y)
and o,(z) vary with space, numerical discretization errors
associated with the finite-difference equations make the
absorber approximately, instead of perfectly, match the interior
media and cause certain reflection as a wave travels through
the absorber. The steeper the variation of these parameters, the
larger the numerical reflection. Therefore, to avoid significant
numerical reflections, these parameters have to be increased
gradually and continuously to their largest values.

In the formulation of PML presented by Berenger [1], the
conductivity profile in PML is chosen as, take o.(z) as an
example

z

0,(2) = Om (g)n (54)
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Fig. 2. Curves of s,0(z),0:(z) and s.0(z)o:(2) vs. the ratio z/6 when
n=2,8; = 3 in (55) and 0y, = 1 in (56).

where § is the thickness of the absorber and z is the distance to
the interface of the PML and the internal medium. Optimum
values of 0, and n depend on the thickness of the absorber
6. The thicker the absorber, the larger the optimum values of
om and n are. Some numerical experiments of the selection
of o, and n for various absorber thicknesses are presented in
[6] and [11]-[13].

For the generalized perfectly matched layer presented in
the last section, patterns of both s,¢(2) and o,(z) need to be
determined. From (23), it can be found that for propagating
waves, the fields attenuate according to e~ (s20(2)02(2)/ wek.z,
and for evanescent waves, the fields attenuate in the rate of
e=s=0lk:12  provided that ko, /we is negligible compared
with &7 in the frequency range of interest. OQur objective is
to properly select s,0(z) and o,(z) so that the absorber can
effectively absorb both propagating and evanescent waves.
First, we let the product of s,¢(z) and o,(z) change gradually
with space, and we select

s.0(z)=1+ sm(g)n (55)

0,(2) =0 sin? (%) (56)

When s,0(z) and o,(z) are chosen as (55) and (56), the
product of s,0(#) and o,(z) changes with space nearly in
z% as z closes to zero, and approximately in 2™ as z closes
to 6. Numerical tests show that, for propagating waves, the
effect of the absorber with s,9(#) and o,(2) chosen as (55)
and (56) is about the same as that of the original PML with
o.(z) chosen as (54). If s,0(2) is chosen as (55) and ¢,(2)
is chosen as (54) instead of (56), then the product of s.0(2)
and 0,(z) can vary too fast as z closes to 6, and consequently
large numerical reflection may appear. Fig. 2 shows patterns
of s,0(2),0:(#) and s,0(2)0.(z), where n is equal to two
in the expression of s,0(z) in (55). It can be seen that the
product s,0(2)0.(z) varies almost uniformly as a parabolic
function in the entire region of the absorber. The selection of
s.0(2), as expressed in (55), will typically make the value of
8,0(z), especially near the outer computation boundary, much
larger than one, so that the attenuation of evanescent waves is
substantially accelerated.



2220

It has been found that if the value of s,0(2) is too large,
large numerical reflections can appear at high frequencies.
The reason for this phenomenon, we think, is as follows.
As s,0(2) increases in its value, the wavelength of the fields
in the absorber decreases by a factor of s,9(z). We found
that significant numerical reflection can be observed when the
wavelength of the fields decreases to about two to three times
the finite-difference space step. Therefore, the value of s,
needs to be bounded by the condition A/(1+s,,) > 2 to 3 dh,
where dh is the finite-difference space step and A is the shortest
wavelength of interest for the fields in the interior medium
terminated by the absorber.

The value of o, can be determined from the theoretical
reflection coefficient of the absorber. For example, when n = 2
in (55) and a perfect electric conductor is placed to terminate
the absorber, the theoretical reflection coefficient Ry, of the
absorber for a normal incident propagating wave can be found
as

9 6
Ry = exp [_EE/ $20(2)02(2) dZ]
0

1 2 omb
= exp {—|i1+8m<§+F):|?} (57)

From (57), the value of o, can be chosen as

ec/d

- In Rep.
1+ sm(1/3+2/72) h

(58)

Om =

VI. NUMERICAL TESTS

A. Performance of GPML for Waveguide Structures

Consider a rectangular waveguide filled with the free space.
The wider side of the waveguide cross section is 40 mm.
The FDTD space step dh is chosen to be 1 mm. The cutoff
frequencies of TE10 and TE20 modes are at 3.75 and 7.5
GHz, respectively. A 16-cell-thick PML or GPML absorber
to be tested with Ry, = 107% is placed at the right end of
the waveguide. The reflection coefficient of the absorber to
be tested is measured at the interface of the free space and
the absorber. The waveguide is excited by a sheet of current
source located at one space step away from the tested absorber
at the right and 75 space steps away from an “ideal” absorber
at the left. The “ideal” absorber that simulates an infinite long
waveguide is a 30-cell PML with Ry, = 1078, The “ideal”
30-cell PML provides near perfect absorption for propagating
waves, while 75 space steps from the current source to the
“ideal” absorber plus additional 30 space steps inside the
absorber provide sufficient damping for the evanescent waves,
probably except for a small frequency range near the cutoff
frequency. The waveform of the current source is a 100-ps-
wide Gaussian pulse modulated by a 15-GHz carrier. Since
the medium inside the waveguide is lossless, the auxiliary
variables are not necessary and only (44)—(47) are used.
For GPML, the parameter s,, is set as five, so that when
A/(L+ s,,) = 3, the frequency f = 16.7 GHz. The reflection
coefficients of the 16-cell PML and GPML absorbers are

shown in Fig. 3 for TE ¢ and TEs modes. As can be seen .
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\ —  TEI0(PML)
\ TE10(GPML)
A - - - TE20(PML)
-=ee TE20(GPML)

Reflection Coefficient (dB)

0 5 10 15 20
Frequency (GHz)

Fig. 3. Numerical refiection coefficients of TEqp and TE2q modes for
16-cell PML/GPML in a rectangular waveguide with the wider side of the
waveguide cross section of 40 mm. The FDTD space step dh is 1 mm. The
theoretical reflection coefficient of PML/GPML is set at Ry, = 10—, and
$m = 5 for GPML.

el ]

| W

Metal Strip

z ] Y

Metal Plane
Fig. 4. Cross section of the computation domain for a microstrip line. The
width of the metal strip is W = 1000 um. The thickness of the substrate

h = 500um. The space step Az = Ay = Az = 125 um. Due to the
symmetry of the structure, half of the physical structure is computed.

from Fig. 3, PML can only absorb waves somewhat above
the cutoff frequency, while the GPML cannot only absorb the
propagating waves, but also adds a substantial damping to the
evanescent waves.

In the above as well as following numerical tests, the
conductivity profiles for PML and s.9,sy0 and s, profiles
for GPML are all chosen to be parabolic functions.

B. Performance of GPML for Microstrip Lines

To simulate a wave propagation along a microstrip line,
PML/GPML is placed near the outer computation domain as
shown in Fig. 4. Due to the symmetry of the structure, only
half of the 3-D structure is computed, and the surface at the
center of the metal strip is modeled as a magnetic wall. The
dimensions in the transverse cross section of the computation
domain are denoted as nz and ny as shown in Fig. 4. The
relative dielectric constant of the substrate is four.

At the end surfaces perpendicular to the metal strip, where
outgoing waves incident upon outer boundaries in near normal
incident angles, PML/GPML works very well as expected. A
16-cell PML/GPML can easily make the reflection coefficient
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Frequency (GHz)

Fig. 5. Percentage errors in the computed voltage of the microstrip line of
Fig. 4. The computation domain of the cross section is of 14 X 14 cells. The
thickness of PML/GPML is eight cells. Rgp = 1075, 5,, = 6.

lower than —80 dB. On the top and the side surfaces of the
computation domain, where fields are mostly evanescent in
the direction normal to outer surfaces, GPML is found to be
more effective than PML.

Fig. 5 shows the percentage errors in the computed voltage
of the microstrip line for eight-cell PML and GPML absorbers
placed on the top and the side surfaces of the computation
domain, with Ry, = 107° and s,, = 6. The size of the
computation domain in the transverse direction is chosen
as nz = ny = 14 and dh = 125pum. The percentage
errors in the voltage of the microstrip line is calculated with
respect to the reference voltage obtained with a very large
computation domain. The large computation domain is of the
size nx X ny = 50 x 50, and is terminated by a 32-cell-
thick GPML at each side, with Ry, = 1070 and s,,, = 6.
The voltage of a microstrip line is calculated with the line
integration of the electric field from reference plane to the
metal strip. It can be seen from Fig. 5 that GPML results in
smaller numerical error than PML.

C. Performance of GPML for Lossy Media

In order to evaluate the performance of the GPML for
terminating lossy media, let us consider the configuration
shown in Fig. 6. There are three lossy layers inside the
computation domain. Suppose the electric conductivities of
the lossy layers are o¢ = 0.1,0.2,0.3 S/m and the magnetic
conductivities ¢f are all equal to zero. The computation
domain is of 100dh x 50dh, with dh = 1.5 cm. The
computation results displayed are for the 2-D TE case. The
excitation of the fields is through a point source at the mesh

point (50, 25) by specifying
55 (10 — 15 cos 2t 4 6 cos 4t — cos 6mt)

fort <1ns
0 fort > 1ns.

H,(50,25) = {

(59)

A reference solution is computed uvsing a large domain of
400dh x 400dh. Denote H,(i,j) the field in the small
domain with PML/GPML absorbers under test and H,..(4, j)
the reference field computed with the large domain. The L?
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o, =03 5/m

Source Point

o, =028/m

c, =0.18m

Fig. 6. Cross section of a layered lossy media terminated by PML/GFML
absorber. The electric conductivities are oo = 0.1,0.2,0.3 S/m, as shown
in the figure, and magnetic conductivities are o5 = 0 S/m. The size of the
computation domain is 100 X 50 cells. A point source is located at the center
of the computation domain. .

1021
1074}
10‘6[—

108

L? Norm of Errors

1070

1ol

100 200 300 400 500

Number of Time Steps

Fig. 7. The L? norm of the reflection error of PML/GPML versus number
of time steps for the layered lossy media structure shown in Fig. 6.

norm of the error in H,(4, ) is computed as

100 50

L =% "N [H.(,4) — Har(iy 4)]

i=1 j=1

(60)

Fig. 7 shows the results computed using a eight-cell GPML
with Ry, = 1074, s, = 6 and using other two alternative
eight-cell absorbers. Auxiliary variables representing the time
integration of the corresponding field variables are used in
implementing GPML. On the other hand, the implementations
for the two alternative absorbers are the same as that for the
original PML. In one alternative absorber, the o, and o, are
simply chosen according to 0, /€g = 05/ o, While in the other
alternative absorber, (6o+0)/€0 = (g+03)/1o. The o, and
o} of the two alternative absorbers are selected according to
Rin = 107* for terminating a lossless medium. As can be seen
from Fig. 7, reflection errors of the two alternative absorbers,
since they do not match the internal lossy media, are much
larger than the reflection error of the GPML absorber.
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VII. CONCLUSION

This paper presents the GPML technique that can be applied
to absorb both propagating and evanescent waves in lossless
and/or lossy medium. Numerical tests on waveguide structures,
microstrip lines, and layered lossy media problems show that
the generalized perfectly matched layer can lead to numerical
solutions with very small numerical errors that can hardly
be achieved by the original perfectly matched layer. Further
extension of the generalized perfectly matched layer method
to lossy dispersive media is straightforward by applying the
existing techniques in dealing with dispersive media [14], [15].
Potential problems in absorbing evanescent waves in lossy
media at low frequencies need to be studied further.
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